
ALGEBRAIC CURVES
EXERCISE SHEET 2

Exercise 2.1.

(1) Let V be an algebraic set in An(k) and P ∈ An(k) a point not in V . Show
that there is a polynomial F ∈ k[X1, ..., Xn] such that F (Q) = 0 for all
Q ∈ V , but F (P ) = 1.

(2) Let P1, ..., Pr be distinct points in An(k), not in an algebraic set V . Show
that there are polynomials F1, ..., Fr ∈ I(V ) such that Fi(Pj) = 0 if i ̸= j,
and Fi(Pi) = 1.

(3) With P1, ..., Pr and V as in (2),and aij ∈ k for 1 ≤ i, j ≤ r, show that there
are Gi ∈ I(V ) with Gi(Pj) = aij for all i and j.

Solution 1.

(1) As P /∈ V , there exists f ∈ I(V ) such that f(P ) = λ ̸= 0. k is a field so
there exists λ−1 ∈ k such that λ−1f(P ) = 1, so we can choose F := λ−1f ∈
I(V ).

(2) Let 1 ≤ i ≤ r. Set the ideal

Ii := I ·mP1 . . . m̂Pi
. . .mPr ⊂ I

where
• ·̂ means that this term is removed
• mP denotes the maximal ideal defining P .

Then V (Ii) is the algebraic set V ∪
⋃

j ̸=i Pj. We can apply the previous
question to V (Ii) and Pi to find Fi ∈ I(V (Ii)) ⊂ I(V (I)).

(3) It suffices to combine the Fi’s of the previous question :

Gi :=
r∑

j=1

aijFj

Exercise 2.2.

(1) Determine which of the following sets are algebraic:
(a) {(x, y) ∈ A2(R) | y = sin(x)}
(b) {(cos(t), sin(t)) ∈ A2(R) | t ∈ R}
(c) {(z, w) ∈ A2(C) | |z|2 + |w|2 = 1}

(2) Show that any algebraic subset of An(R) can be defined by a single poly-
nomial equation. Is the same true for An(C)?
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Solution 2.

(1) (a) V = {(x, y) ∈ A2(R) | y = sin(x)} is not algebraic. If it was, V ∩{y =
0} would be an algebraic set in A1(R) with an infinite number of
(isolated) points (given by x = kπ, k ∈ Z).

(b) {(cos(t), sin(t)) ∈ A2(R) | t ∈ R} = {(x, y) ∈ A2(C) | x2 + y2 = 1}
is clearly algebraic.

(c) V = {(z, w) ∈ A2(C) | |z|2 + |w|2 = 1} is not algebraic. Indeed
V ∩ {z = 0} = {w ∈ A1(C) | |w|2 = 1} is a proper subset with
infinitely many points, so it cannot be algebraic.

(2) Let V be an algebraic set in An(R). R[X1, . . . Xr] is Noetherian so V =
V (f1, . . . , fr). Now it is easy to check that x ∈ V (f1)∩V (f2) if and only if
f1(x)

2+f2(x)
2 = 0 using that squares are always non-negative in R. Thus,

f 2
1 + · · ·+ f 2

r = 0 is a single equation defining V .
It does not work for An(C) since squares can be negative and cancel

each other. More precisely, you can check that V = {0} ∈ A2(C) is an
algebraic space (defined by I(V ) = (X, Y )) but is not cut out by a single
polynomial equation. (This is true in fact for any algebraically closed field)

Exercise 2.3.

Let k be a field and I, J two ideals of k[x1, . . . , xn]. Let a = (a1, . . . , an) ∈ kn.
Recall that I · J = {fg, f ∈ I, g ∈ J}. Show the following assertions:

(1) If I ⊆ J , then V (J) ⊆ V (I).
(2) V (I) ∪ V (J) = V (I · J).
(3) V ({x1 − a1, . . . , xn − an}) = {a}.

Solution 3.

(1) Suppose x ∈ V (J) then f(x) = 0 ∀f ∈ J . Using I ⊆ J , we get f(x) =
0 ∀f ∈ I Therefore x ∈ V (I)

(2) Set I ′ = {f ∈ k[x1, . . . , xn] | f(x) = 0 ∀x ∈ V (I) ∪ V (J)}. Clearly if
f ∈ IJ ⊆ I ∩ J , f ∈ I ′.

If x ∈ V (IJ), let f = fIfJ ∈ IJ with fI ∈ I and fJ ∈ J . f(x) = 0 so
either fI = 0 or fJ = 0. Suppose that fI ̸= 0, then ∀g ∈ J, fI(x)g(x) = 0
so x ∈ V (J). The argument is symmetric so we get that x ∈ V (J) or
x ∈ V (I).

(3) Clearly a ∈ V ({x1−a1, . . . , xn−an}). Conversely, x ∈ V ({x1−a1, . . . , xn−
an}) satisfies x1 = a1, ... so x = a.

Exercise 2.4.
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Let V ⊆ An
k and W ⊆ Am

k be algebraic sets. Show that the following set is an
algebraic subset of Am+n

k :

V ×W = {(a1, . . . , an, b1, . . . , bm) ∈ Am+n
k | (a1, . . . , an) ∈ V, (b1, . . . , bm) ∈ W}

Solution 4.

We label the variables such that IV ⊂ k[X1, . . . , Xn] and IW ⊂ k[Xn+1, . . . , Xn+m].
Then the following ideal of k[X1, . . . , Xn+m] defines the algebraic set V ×W .

IV×W = IV × k[Xn+1, . . . , Xn+m] + k[X1, . . . , Xn]× IW

Exercise 2.5.

A ring is called local if it has a unique maximal ideal. Let k be an algebraically
closed field.

(1) Let I ⊆ R = k[x1, . . . , xn] be an ideal such that V (I) is a point. Show
that R/I is a finite-dimensional local algebra and that the elements of the
maximal ideal are nilpotent.

(2) Let I ⊆ R = k[x1, . . . , xn] be a radical ideal such that V (I) is a finite set of
r points. Show that R/I ≃ k × . . .× k, with r copies of k in the product.
(Hint: consider the intersection of maximal ideals containing I and use the
chinese remainder theorem).

Solution 5.

(1) • R/I local : by Nullstellensatz, points in V (I) are in one-to-one corre-
spondance with maximal ideals in R/I.

• Let n be a maximal ideal of R/I. The elements of n are nilpotent.
Indeed,

√
I = m is a maximal ideal in R. Then, for all f ∈ m,

there is n ∈ N, fn ∈ I. We can conclude using the quotient map
π : R −→ R/I and n = π(m).

• R/I is a finite dimensional algebra. You can check that there is N ∈ N
such that mN ⊆ I. Now R/mN ↠ R/I and R/mN is finite dimensional
as a k−vector space. Indeed, one can always choose r linear generators
f1, . . . , fr for m (of the form xi − ai). Then a basis is given by

{
∏

i1,...,in

fi1 . . . fin | n < N}

where the empty product is 1.
An example to have in mind is the following : R = k[x, y], I = (x, y2).

V (I) = (0, 0) ∈ A2
k.

In this case, m = (x, y), m2 = (x2, xy, y2) and m ⊃ I ⊃ m2.
As a k−vector space, R/m2 ≃ k · 1⊕ k · x⊕ k · y.
R/I ≃ k · 1⊕ k · y.
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(2) If V (I) is a point (a1, . . . , an) and I radical, then I = ma = (x1−a1, . . . , xn−
an) maximal. Using exercise 2.3, (2), we get that if V (I) is a finite set of
points {y1, . . . , yk} with I radical, I is the intersection of the corresponding
maximal ideals. They are always pairwise coprime, so we can use the
chinese remainder theorem to get the desired isomorphism, knowing that
for all myi there are isomorphism R/myi ≃ k.

Exercise 2.6.

Let k be an algebraically closed field and V = {p1, . . . , pr} ⊆ An
k a finite algebraic

set. We call ai, 1 ≤ i ≤ s the distinct first coordinates of p1, . . . , pr. Consider the
finite varieties Vi = {(x2, . . . , xn) ∈ An−1 | (ai, x2, . . . , xn) ∈ V } ⊆ An−1.

(1) Assume that each Vi is the zero locus of N polynomials fi,1, . . . , fi,N for
some N ≥ 1. Show that there exist polynomials gk, 1 ≤ k ≤ N such that
gk(ai, x2, . . . , xn) = fi,k.

(2) Show that V is the zero locus of n polynomials in k[x1, . . . , xn]. (Hint:
reason by induction on n)

(3) Show that I(V ) is generated by n polynomials. (Hint: using the previous
exercise, I(V ) is characterized by k[x1, . . . , xn]/I(V ) ≃ k × . . .× k)

Solution 6. Note that i ranges from 1 to s ≤ r, because we consider only the
distinct first coordinates of our set of r points.

(1) It suffices to set

gk(x1, . . . , xn) :=
s∑

i=1

fi,k(x2, . . . , xn)

∏
j ̸=i(x1 − aj)∏
j ̸=i(ai − aj)

.

(2) We use induction. For the base case, V = {p1, . . . , pr} ⊆ A1
k so V is the

zero locus of f1 =
∏r

i=1(x− pi).
Induction step : suppose each Vi is the zero locus of n− 1 polynomials.

We can consider the set of {g1, . . . , gn−1} of question (1) together with

gn :=
s∏

i=1

(x1 − ai).

We can check that V is the zero set of {g1, . . . , gn}.
(3) A = k[x1, . . . , xn] is of transcendance degree n over k and A/I(V ) ≃ k ×

· · · × k has transcendance degree 0 over k. One can verify for any f ∈ A,
A/(f) is of transcendance degree at least n− 1 (it is an equality if f is non
constant). By induction on transcendance degree, we get that we need at
least n generators. But we showed in (1) and (2) that we can always find
n polynomial such that V is their zero set. Thus, I(V ) is generated by
exactly n polynomials.
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